NISTIR 6527

Measurement Needs for Fire Safety: Proceedings of an International Workshop

Thomas J. Ohlemiller Erik L. Johnsson Richard G. Gann

Measurement Needs for Fire Safety: Proceedings of an International Workshop

Thomas J. Ohlemiller
Erik L. Johnsson
Richard G. Gann
Building and Fire Research Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8653

June 2000

U.S. Department of Commerce William M. Daley, Secretary

Technology Administration
Dr. Cheryl L. Shavers, Under Secretary of
Commerce for Technology

National Institute of Standards and Technology Raymond G. Kammer. Director

NOTICES:

Works of authors who are not staff members of NIST are provided for information purposes.

NIST is not responsible for their content.

The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards and Technology, nor is it intended to imply that the product identified is necessarily the best available for the purpose.

as day

Experimental Data for CFD Models

Dr. George Hadjisophocleous, P.Eng.

National Research Council Institute for Research in Construction Fire Risk Management Program

Outline

- Introduction
- CFD model description
- Input data needed
- Data for model validation
- Summary

JAC CARC

Computation vs Experiment

- "The only one who believes the numerical results is the author"
- "Everyone believes the experimental results except the experimentalist"

isig-chig

CFD Models

- Divide space into very small control volumes
- Solve the fundamental equations for mass, momentum energy and species concentration for each control volume

THE CHIE

CFD Model Inputs

- · Geometry of space/compartment
- · Openings, obstacles
- · Grid distribution
- · Solution variables
- · Boundary conditions
- · Fire representation

ナカロ・ひかり

Input data - Geometry

- · Compartment dimensions
- Partitions
- Obstacles
- Openings

inc con

Input Data - Initial Conditions

- Temperature distribution in solution domain
- · Air movements
 - Heat sources
 - Openings, wind effects
 - Stack effect

1350・57316

Input Data - Boundary Conditions

- Velocity
 - openings
 - leakage areas
 - surface roughness
- Energy
- Thermal properties of boundaries
- radiative properties
- Dynamic changes to boundary conditions
 - Doors windows open during test
 - fire size changes during test
 - forced ventilation activates during test

1710 - CHILD

Input data - Fire

- · Heat release rate vs time
- Yield fractions for CO, CO₂, and other toxic gases
 - representative of fuel and scenarios considered
 - yield data usually from bench tests
- · Ideal if productions are per unit mass
- · Location of fire
 - area
 - height
 - plume characteristics

לובוט לובנ

Combustion modelling

- Type of fuel, thermal, thermodynamic and combustion properties
- Rate of release of fuel into domain
- inpu
- calculated very difficult for furniture

HID-CHAC

Input data - Detection Systems

- Location
- Characteristics

 - RTI rate of temperature rise

SING-CHILD

Input data - Mechanical Ventilation

- · Location and area of inlets/outlets
- · Flow rates
- · Properties ambient air
- · Time of activation

がじしいがじ

CFD Model Results ING-GING

Direct Output Data

- Temperatures
- Velocities
- · Concentration of toxic gases
- Radiation fluxes
 - Not economical to get adequate data especially for large compartments

物で・公司な

Indirect Output Data

- Fire heat release rates
- · Upper layer properties: temperature, CO, CO₂
- · Upper layer height
- · Plume entrainment rates
- · Flows through openings

ココケージコリ

One to One Comparisons THE CASE

Needed for CFD Models

- Compartment characteristics
- · Initial conditions
- Dynamic conditions
- Fire characteristics
- \bullet Temperature, CO, CO_2 distributions vs time
- Flow rates

FIFE-CENT